As we have reported many times since 2014, America has a major problem with its wheat supply. Virtually all of the wheat grown in the northern climates is contaminated.

There is currently no GMO wheat grown in the U.S., even though from time to time a farmer will find wheat growing that does not die when sprayed with glyphosate herbicides. These are no doubt rogue varieties of wheat left over from GMO test plots years ago, but there is currently no commercially grown GMO wheat.

And yet, most of the nation’s wheat is contaminated with glyphosate. This is because of the practice of “desiccation,” where farmers will apply the herbicide RoundUp with glyphosate to kill the wheat so it can be harvested at a convenient time, like before the first snow fall.

To learn more about this see:

ALERT: Certified Organic Food Grown in U.S. Found Contaminated with Glyphosate Herbicide

Almost all American Grains Are Contaminated with Glyphosate Herbicide
Glyphosate is now linked to cancer as well as many other diseases. Some scientists believe that the gluten intolerance epidemic we face in the U.S. has less to do with wheat and gluten than it does with the contamination of the wheat supply with glyphosate.

To learn more about this topic see:

Gluten Intolerance and the Herbicide Glyphosate: A National Epidemic

Common Weedkiller Used in Modern Agriculture Could be Main Factor in Gluten Intolerance

MIT Researcher: Glyphosate Herbicide will Cause Half of All Children to Have Autism by 2025

A new study just published in the Journal of Agricultural and Food Chemistry, may have identified another problem with America’s wheat supply that is desiccated at harvest with glyphosate.

The title of the study is PRE-HARVEST GLYPHOSATE APPLICATION DURING WHEAT CULTIVATION: EFFECTS ON WHEAT STARCH PHYSICOCHEMICAL PROPERTIES.

The study looks at the maturity of the wheat when it is desiccated with glyphosate and the digestibility of the starch in wheat. When glyphosate is applied before the wheat is mature, it affects the physicochemical properties of the starch.

The Abstract:

Due to non-uniform maturation, some plants may not be at the recommended stage of maturity when pre-harvest glyphosate is applied. The objective of this study was to determine how pre-harvest glyphosate timing affects wheat starch physicochemical properties. Two wheat cultivars were grown in three locations and glyphosate was applied at the soft dough stage (early application) and the ripe stage (commercial standard).

Upon harvest, starch chemical characteristics were studied. The proportion of B-type starch granules was lower in treated samples, although starch molecular weight was not affected. Rapidly digestible starch content was highest when glyphosate was applied at the ripe stage, and lowest in the control, and vice versa for slowly digestible starch. Additionally, flour pasting viscosity was significantly higher in samples treated at the soft dough stage.

Overall, the effects on wheat starch physicochemical characteristics was more pronounced when glyphosate was applied at the soft dough stage of maturity.

When my company, Healthy Traditions, tested all of our organic grains in 2014 and found residues of glyphosate in them, we began testing ALL of our foods for glyphosate, and eliminated a significant portion of our inventory that tested positive.

It began a long search to find clean food not contaminated with glyphosate, as not even the USDA Certified Organic seal guarantees ZERO contamination. USDA NOP (National Organic Program) standards allow for a small percentage of glyphosate to be present in certified organic foods.
We do not.

What we found is that virtually all of the wheat grown in northern climates are contaminated, even USDA certified wheat that is not sprayed with glyphosate. Glyphosate is everywhere: in our ground water, and even in our rain water!

We now source our wheat from northern Italy, where the wheat consistently tests to be free from detectable levels of glyphosate. We also offer Einkorn ancient grain, which is probably the oldest form of wheat that has never been hybridized for higher gluten elasticity.